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FPGA computing in cloud
• High Performance FPGAs are available: 

• High computational power: Intel Stratix-10
• With a large memory: Xilinx UltraScale+ with UltraRAM
• But they are expensive for most users to keep themselves.

• Programming environment is improved:
• Open-CL is widespread for computational usage.
• Vivado-HLS is popularly used for general usage.

→ FPGAs in cloud:
More flexible and power efficient than using GPU.

• FPGA in the Cloud: Booting Virtualized Hardware Accelerators with 
OpenStack [FCCM2014]

• Microsoft Catapult [ISCA2014 ][HEART2017]
• FPGA Supervessel Cloud by IBM[ICFPT2016]
• Amazon EC2 F1 Instance [https://aws.amazon.com/ec2/instance-types/f1/]



Conventional FPGA-in-Cloud
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High-Performance FPGAs are attached into each Host.

• The total cost becomes large.
• High performance FPGAs are still expensive.

• The size of FPGA is limited.
• Multiple FPGAs cannot be used together.
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Our Proposal : Virtual Large FPGA

A lot of cost-efficient  middle-scale FPGAs are
tightly connected.

They can be treated as if they were a single FPGA in 
HLS description level.

Higher performance per cost than conventional
FPGA in cloud.

Practically infinite resource is used.
Separated into a number of virtual FPGAs and 
shared by the multiple users.

Flow-in-Cloud (FiC) is the first prototype.



Microsoftʼs Catapult V1/V2
[Putnum：ISCA-2014][Caulfield：Micro-2016]
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Rank computation for Web search on Bing.
Task Level Macro-Pipelining (MISD)
FE: Feature Extraction
FFE: Free Form Expression: Synthesis of feature values
MLS: Machine Learning Scoring

2-Dimensional Mesh is formed (8x6) for 1 cluster.

FPGA: Intel Stratix V

10Gbps network is upgraded to 40Gbps network in V2



https://euroexa.eu/
Recent FPGA supercomputers

(For example Rikenʼs)



Todayʼs talk
• Building a virtual large FPGA

• Concept 1:  Use middle-range FPGAs and common serial links
• Concept 2:  Virtualize at the level of HLS description
• Concept 3:  Couple accelerators and a switch tightly in an FPGA

→ Accelerator-in-Switch
• Our prototype: FiC (Flow-in-Cloud)
• Next step: Building a virtual heterogeneous computing system
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1.Multiple middle scale FPGAs vs. a single powerful FPGA

• Most of price/resource of KU085 is the lowest.
• Two KU085s can provide 1.5 LCs of KU115 with almost the same 

price.
• Five KU085s can provide almost the same LCs of VU440 with 

about 1/3 price.

Kintex
Ultrascale
KU085

Kintex
Ultrascale
KU115

Virtex
Ultrascale
VU440

Virtex
Ultrascale+
VU9P

Logic Cell (K) 1088 (3.4) 1451(4.3) 5541(10.6) 2586(6.69)
DSP 4100(0.9) 5520(1.14) 2880(20.4) 6840(2.53)
BRAM(Mb) 56.9(65.4) 75.9(83.0) 88.6(664.6) 345.9(50.05)
Price ($) 3720 6297 58890 17314

Price is from digikey
( ) is price for each unit.



0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200 1400 1600 1800

Price/KLC($) vs. Logic Cells 

Virtex Ultrascale+

Kintex Ultrascale+

Virtex Ultrascale

Kintex Ultrascale

KCells

Price/KLCs($)

4

8

12

16

20

24
Price/KLC is increased with 
its size, because high-end 

FPGAs have special facilities



0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600 700

DSP vs. Price (X $100 ）

Virtex Ultrascale+

Kintex Ultrascale+ Virtex Ultrascale

Kintex Ultrascale

X $100

DSP
Kintex Ultrascale has 

surprisingly large 
number of DSPs 



0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

BRAM(Mbit) vs. Price ($100) 

Virtex Ultrascale+

Kintex Ultrascale+
Virtex Ultrascale

Kintex Ultrascale

X $ 100

Mbit

BRAM vs. Price is 
almost linear,but

Kintex Ultrascale is 
cost effective Virtex Ultrascale+ has 

a large memory by 
UltraRAM but 

expensive



Cost including serial links
• KU085 has the best  price per resource!

• Logic cells:  $3.4 for 1K LC.
• DSP: $0.9 for a DSP.
• BRAM: $65.4 for 1Mb.

• Letʼs use a number of common serial links GTH (12.5Gbps).
• Of course, faster serial links (32Gbps GTY, 58GbpsGTM) are available, but 

cost becomes high.
• Firefly cable ($59 for 4 links) is available.

• No drivers/receivers are needed.
• Aurora IPs from Xilinx can be used.

• Conclusion: “Using multiple middle scale FPGAs” is a cost 
efficient solution.
• Open issue

• Cost of switches
• Operational Speed
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2. Virtualization at the IP based HLS design

HLS is originally described with a set of IPs:
Division is easy except the problem of handshake.

AXI
stream

Interface
is difficult



The handshake problem

HLS1 HLS2

FPGA1
FPGA2

Data

Ready

• Valid signal can be omitted by checking the data arrival.
• Without a ready signal, the possibility of input FIFO overflow remains.



Overriding the handshake problem
• Virtual ready wire: providing a virtual wire between the receiver 

and the sender.
• Direct approach but the overhead of synchronization may increase.

• Providing a required memory inside HLS module.
• Convenient for streaming processing but the HLS programmer must 

take care of it.
• A pre-processor can insert delay or synchronization code 

according to the evaluation results from Vivado HLS.
→ All methods require fixed latency/throughput communication.

Our approach: circuit switching with Static Time Division Multiplexing. 



Vivado HLS evaluates
the number of clock cycle
in a loop.
→Such information helps 
override the handshake 
problem.



An example: Streaming processing
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Delay Delay



3. Integrating switch and accelerator tightly in an 
FPGA: Accelerators in Switch
• What is the benefit of FPGAs compared to GPUs？

• Switching capability is much superior to that of GPUs.
• Of course, recent GPUs provide NVLinks or other powerful interface.

• However, they are only for expensive GPUs, and the function is limited.
• Various type of switches can be implemented on FPGAs. 
• FPGAs are widely used for high speed switches and network interface.

• Tightly coupled switch and accelerator in an FPGA.
• Separation with Partial Reconfiguration
→ Accelerator in Switch [FPL2017]



An example of
AiS (PEACH3)

• Implemented as a module on
the Avalon MM bus.

• Shared memory is used for exchange
of data

• Reduction / Locally Essential Tree
generation were implemented in the
AiS part.

Intel Stratix V



The execution time for LET generation
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Todayʼs talk
• Building a virtual large FPGA

• Concept 1:  Use middle-range FPGAs and common serial links
• Concept 2:  Virtualize at the level of HLS description
• Concept 3:  Couple accelerators and a switch tightly in an FPGA

→ Accelerator-in-Switch
• Our prototype: FiC (Flow-in-Cloud)
• Next step: Building a virtual heterogeneous computing system
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Flow-in-Cloud (FiC) overview



Flow-in-Cloud (FiC) SW Board

FiC Network
8x4 9.9Gbps

Ethernet

Control Network

Application 
Logic Area

SW Control board
Raspberry Pi 3 model B

FPGA
Xilinx Kintex

Ultrascale XCKU095

Rusberry Pi 3

FPGA KU085/095

STDM
Switch

HLS modules

DDR-4 SDRAM 16Gb

Here, we call each
link “channel”, 

and a bundle of
4 channels  “lane”.

A board has 8 lanes
each of which has
4 channels

DDR-4 SDRAM 16Gb
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Block Diagram of FiC



STDM (Static Time Division Multiplexing)
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S4An input register is selected 

according to the pre-loaded 
table, and transferred to the output
register.

Input data arrive at each port 
cyclically registered.

Output data are cyclically
sent to the output port 

An example of
4x4 with four slots



STDM (Static Time Division Multiplexing)
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• A circuit is established between
source and destination.

• Latency and bandwidth are kept.

• Latency = 55+2 x (# of slots)
clock cycles



Multicast using the STDM
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For internal usage

Multicast is done 
efficiently.

Multiple outputs 
can receive the 
same data in a 
specific slot.



The resource usage 

GT: High speed link

Enough design is remained for HLS design.

4 switches are provided for each channel.



How boards should be connected?
• Any type of interconnection is OK.
• However, there are two limitations:

• 4 channels  are bundled into a lane.
• For HLS modules, the size should be less than four 9x9 switches.

• 4 channels in a lane are used independently.
• An HLS module has four independent ports, or four HLS modules with a port are 

implemented at maximum.
Network with 8-degree
→ Natural solution: 4 dimensional torus

The diameter is large.
→ Alternative: Full mesh Connected Cycles（FCC)

Dragonfly-like network but more economical.



4-DTorus: the case of  3x3x3x3=81boards
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Suitable if local traffic is dominant.
Diameter is relatively large: 8



4x24 Full mesh Connected Cycles (FCC)
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24 Cycles are
connected
in full-mesh

96 boards are connected



3x3x3x3 Torus 4x24 FCC
Number of boards 81 94
Slots (Bit
complement/tornado/reversal)

1 1

Slots (All to all) 12 8
Diameter 8 5
Max Latency (All to all nsec) 5360 3550

Estimation of the network performance



Topology Optimization for Traffic Pattern*

Circuit Switching

0 0 1 0 2 1 3
0 2 1 3

4 5

0 2 1 3

4 5

node swap

indirect path 6

Recursive Partition

# of slots = 2
# of switches = 12
# of links = 18
Avg. SW hops = 1.313

# of slots = 4
# of switches = 44
# of links = 78
Avg. SW hops = 2.563

# of slots = 9
# of switches = 118
# of links = 184
Avg. SW hops = 4.543

# of slots = 12
# of switches = 606
# of links = 1063
Avg. SW hops = 5.329

Generated topo. with # of slots Result: comparison with mesh
Avg. hop count Reduced
by up to 83.7%

# of switches reduced 
by up to 56.3%

[*] Yao Hu, Tomohiro Kudoh, Michihiro Koibuchi, "A Case of Electrical Circuit Switched Interconnection Network for Parallel 
Computers", The 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’17), pp. 
276-283, Taipei Taiwan, December 18-20, 2017.

This slide
is supported
from Dr.Hu
and Prof.Koibuchi



Switch/Link synthesis HLS module 1 synthesis

Setting the PR region 

Read

opt_design, place_design
route_design

HLS1 bitmap generation
Make PR region into blackbox
Lock wires in the static region

Basic Design

HLS module 2 
synthesis

opt_design, 
place_design
route_design

HLS2 bitmap 
generation

HLS module 3 
synthesis

opt_design, 
place_design
route_design

HLS３ bitmap 
generation

Read into the blackbox

Design of HLS modules can be done
only with this part.

Partial Reconfiguration for separating HLS from switches.



PR region for HLS module

Now, 3 lanes (12 channels)
are used.
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The current FiC system
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File  configured

Now under 
configuration

GUI from remote terminals
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Fully connection layer of the Lenet
Frequency
（MHｚ）

Power（W) image/sec GOPS GOPS/W

1 board 100 17.89 23551 120.58 6.74
4 boards 100 71.56 94226 482.34 6.74

Frequency
（MHz）

Power（W) GOPS GOPS/W

FiC 4boards 100 71.56 482.34 6.74
Stratex-V [1] 120 25.8 136.5 5.29
KCU060 [2] 200 25.0 172.0 6.88

[1] N.Suda, V.Chandra, G.Dasika, et.al “Throughput-optimized open-based FPGA Accelerator for large-scale
comvolutional neural networks,” FPGA2016.
[2] C.Zhang, Z.Fang, P.Zhao, P.Pan, J.Cong,  “Caffeine: Towards uniformed representation and acceleration
for deep convolutional neural networks,” ICCCAD2017.

Higher performance is achieved with the similar power efficiency compared with
a single FPGA system.
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FLOW-OS is now under development by the national institute of 
industrial science and technology (AIST)



Conclusion
● A virtual large FPGA: 

○ Scalable performance with 
○ similar power/performance and 
○ smaller cost/performance compared to conventional FPGA-in-clouds.

● Future direction
→ Accelerator bare metal cloud
Integration of FPGAs and GPUs.


